Semi-Supervised Transductive Speaker Identification
نویسنده
چکیده
We present an application of transductive semi-supervised learning to the problem of speaker identification. Formulating this problem as one of transduction is the most natural choice in some scenarios, such as when annotating archived speech data. Experiments with the CHAINS corpus show that, using the basic MFCC-encoding of recorded utterances, a well known simple semi-supervised algorithm, label spread, can solve this problem well. With only a small number of labelled utterances, the semi-supervised algorithm drastically outperforms a state of the art supervised support vector machine algorithm. Although we restrict ourselves to the transductive setting in this paper, the results encourage future work on semi-supervised learning for inductive speaker identification.
منابع مشابه
Transductive Inference and Semi-Supervised Learning
This chapter discusses the difference between transductive inference and semi-supervised learning. It argues that transductive inference captures the intrinsic properties of the mechanism for extracting additional information from the unla-beled data. It also shows an important role of transduction for creating noninductive models of inference. Let us start with the formal problem setting for t...
متن کاملSemi-supervised speaker identification under covariate shift
In this paper, we propose a novel semi-supervised speaker identification method that can alleviate the influence of non-stationarity such as session dependent variation, the recording environment change, and physical conditions/emotions. We assume that the voice quality variants follow the covariate shift model, where only the voice feature distribution changes in the training and test phases. ...
متن کاملTransductive Classification via Dual Regularization
Semi-supervised learning has witnessed increasing interest in the past decade. One common assumption behind semi-supervised learning is that the data labels should be sufficiently smooth with respect to the intrinsic data manifold. Recent research has shown that the features also lie on a manifold. Moreover, there is a duality between data points and features, that is, data points can be classi...
متن کاملGraph Based Multi-class Semi-supervised Learning Using Gaussian Process
This paper proposes a multi-class semi-supervised learning algorithm of the graph based method. We make use of the Bayesian framework of Gaussian process to solve this problem. We propose the prior based on the normalized graph Laplacian, and introduce a new likelihood based on softmax function model. Both the transductive and inductive problems are regarded as MAP (Maximum A Posterior) problem...
متن کاملRevisiting Semi-Supervised Learning with Graph Embeddings
We present a semi-supervised learning framework based on graph embeddings. Given a graph between instances, we train an embedding for each instance to jointly predict the class label and the neighborhood context in the graph. We develop both transductive and inductive variants of our method. In the transductive variant of our method, the class labels are determined by both the learned embedding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009